5.2 Whenr =0, U= A[(e®5 —1)? — 1], which is

large and positive since R > S. When r — oo, U is u

negative and approaches 0. The smallest possible

value of U is when r = R and U = —A; that is, the 0 B J
equilibrium separation is r, = R. [f weset r = R+« j V

and make a Taylor expansion of the exponential term -A

in U, then

U=A [({1_%4....}—1)2—1] z—A-}-A(%)z:const-;-%ka:?
where k = 24/52.

5.4 »» The PE is U = —mgh where h is the height
of the mass, measured down from the level of

the cylinder’s center. To find h, note first that

as the pendulum swings from equilibrium to

angle ¢, a length R¢ of string unwinds from the
cylinder. Thus the length of string away from

the cylinder is AB = (I, + R¢), and the height
BDis BD = (I, + R¢) cos ¢. Since the height

CD = Rsin¢, we find by subtraction that h = BD — CD = l,cos ¢ + R(¢cos@ — sin ¢).
Therefore

U = —mgh = —mgl[l, cos ¢ + R(¢ cos ¢ — sin @)].
If ¢ remains small we can write cos ¢ =~ 1 — ¢?/2 and sin ¢ =~ ¢, to give
=~ —1mg {lo — %log‘DQ + R [gﬁ:(l — %¢2) — g'D] ~ —mgl, + %mgloq‘? = const + %kqf)Q

where in the third expression I dropped the term in ¢*. The constant k = mgl,, which is
the same as for a simple pendulum of length /,. Evidently, wrapping the string around a
cylinder makes no difference for small oscillations.

58 x (a) w=+/k/m=+/80/02=20s"), f=w/2r=3.2Hz, and 7 =2r/w =031 s.
(b) Since z, =0, Acos(—6) =0, so § = +m/2. Since v, = wAsiné = 40 m/s, § must be
positive, 6 = +m /2, and therefore A = v,/w = 2 m.

5.10 » If F = —F,sinhaz, then U = — [ Fdz = (F,/a)coshaz. The only equilibrium
position is at = 0 and, for points close to this, Taylor’s series gives

U(z) ~ (F,/a)(1+ a*z?) = Lka® + const,

where k = aF,. The angular frequency of oscillations is w = v/k/m = \/aF,/m.

5.16 » With 6 = m/2 Eq.(5.20) reads
r = A,cos(wt) and y=A,cos(wt—m/2)= A,sin(wt)

from which it follows that 22/A2 + y*/A? = cos®(wt) + sin*(wt) = 1, the equation of an
ellipse with semi-major and semi-minor axes A, and A,



| put problem 18 here because they basically have to solve this problem to do problem 19.

5.18 *xx  When the mass is at position (z,y), the / ;
5! 2
lengths of the two springs are l; and ly, where . K.
20r 22492 1/2 a+x a-x
l, = (a+x)2+y2—a(1+;+ a2y )

~a 1+1 2x+;r2+y2 L (2’ —a+;r—l-y2
- 2\ a a2 8\ a - " 2g’

Here, in passing from the first to the second line, I have used the Taylor expansion (14¢)!/2 =
1+ %E -~ éfz + - -+, dropping all terms of third degree in z or y, but being careful to keep all
terms of second degree. The PE of spring 1 is therefore

Uy = 3kl — L)? = tk[(a—1,) +x+ y? /2a]*
~ skl(a —1)* +2(a — L)z +2° + (1 — l,/a)y’]

where, again, I have dropped terms of degree three in x or y. To find U,, we have only to
replace x by —z, and for the total PE we just add U; and U,. When we do this, the terms
linear in = cancel, leaving
U=U, + Uy, =k[z? + (1 — l,/a)y*] + const
which has the form (5.104), apart from the unimportant constant.
If a < I,, the coefficient of 3 is negative and the equilibrium at the origin O is unstable.
This is because, with a < [,, the springs are in compression at Q. When the mass moves a

little from O along the y axis, the compression in the springs forces it further away, causing
the instability.

5.19 xx+ The simplest way to find the total PE of all four springs is treat them two at
a time. The two springs anchored on the z axis constitute the system of Problem 5.18, for
which we found that

Ur + Uz = k[z? + (1 — l,/a)y).

(See the solution to that problem. I've dropped an uninteresting constant here.) In exactly
the same way, the PE of the two springs anchored on the y axis is

Us + Uy = k[y* + (1 — l/a)2?).
Adding these, we find for the total PE of all four springs

U=U+Us+Us+ Uy =k[z® + 1 + (1 - L/a)(z* + 17)] = kQ“T_l“r?,

where I've used the fact that 22 +y® = r2. This has the advertised form U = %k’w‘:’ with an
effective spring constant k' = 2k(2a — I,)/a. The corresponding force is F = —VU = —k'r.



5.22 x (a) The general solution for a critically damped oscillator (3 = w,) is given in (5.44)
as z(t) = e~“*(C) + Cat). Thus

x., —=&(0)= G and Yy = £(0) = Co — 1, Cy . (ii)

Here z, = 0, so C; =0 and C; = v,. Therefore, z(t) = v te ™.

x(t) (@ x(t) (b)
1 > T >
To t To t

(b) In this case v, = 0 and Egs.(ii) imply that ¢, = z, and C2 = w,x,. Therefore
z(t) = zoe~“t(1 + wot). When t = 7, the natural period, z = z,e=2"(1 4+ 27) = 0.0136z,,.
The motion is almost 99% damped out.

5.26 xx The damping changes the frequency to w; = /w2 — 3?, which we can solve to
give

(1).2 2
B = wor[1— L = gy [1— 22 = w,y/T— 0.998 = 0.0447w, = 0.281 s~
Wy T

After a time t = 107, = 107,, the amplitude will have changed by a factor of

e—ﬁt 255 e—lDBTQ = 6—2017;3/&4)0 = 6—2011'(0.0447) — 0.060 .

In other words, the amplitude will have diminished by a factor of 1/0.060 = 17. Clearly the
change of amplitude of by a factor of 17 is far more noticeable than the change of period by
0.1%.



5.30 xx (a) From Eq.(5.40) we know that x = e=#(C e + Cye=™), where A = /32 — w 2.
We can differentiate this to get the velocity v and then set ¢ = 0 to give the two equations

2, =C1+Cy and v, =AC) —Cy) — F(C1+ Cy)

which we can solve to give
1 1

Cl 2)\[ ()\ + 6) +v ] and 02 = ﬁ[l‘o()\ . ,3) — UO]
(b) . Vo=0 » Xo=0
_t - _t
0 To 0 To
(c) If we let 3 — 0, then A — iw, and the coeflicients C and C, become
T Vo _To
B~ s ™ Y235

and our solution becomes

s %(ei“"‘ i e—wot) 1 i(eiwut - e—mot) = T, co8(w,t) + isin(wot)

21w, Wo

which you should recognize as the general solution for undamped oscillations.

5.34 x We are given that both x, and x satisfy the same inhomogeneous equation, Dz, = f
and Dz = f. Therefore, since D is linear, D(z — x,) = Dx — Dz, = f — f = 0. That is, the
difference x — x, = xy, is a solution of the homogeneous equation Dz}, = 0. Therefore x can
always be written as x = x, + xj, as claimed.

5.42 x The period of the pendulum is 7 = 27,/l/g = 10.99 s. Therefore the quality factor
is Q = m(decay time)/7 = 7 x (8 h)/(10.99 s) = 8, 000.

5.44 xx (&) Since r = Acos(wt — 0), the total energy is
E = 1mi? + 1ka® = imw? A% cos® (wt — 8) + L1k A?sin®(wt — ).
Because w = w,, we can replace k = mw?2 by mw?, and then, since cos?d +sin’f = 1, we get
E = 1mw?A?, as claimed.
(b) The rate at which the damping force dissipates energy is Fy,,v = bv? = 2mpBv2.
Therefore the energy dissipated in one period is

AFEg;, = / 2mpBvidt = Qmﬂsz‘Z/ sin?(wt — 8)dt.
0

0



The remaining integral is just 7 /w. (To see this use the trig identity sin’4 = %(1 —sin 26) and
note that the integral of the sine term over a period is zero.) Therefore, AEy;, = 2rmBwA?.

(c) Combining the results of parts (a) and (b), we find that

E amuw? A? wo, @

AFEg4, B 2rmPBw A2 = 4m 3 ~or

where [ have again used the fact that w = w,. That is, the ratio of the total energy to the
energy lost per cycle is Q/(2).

5.48 xx If we multiply the Fourier series (5.82) by cos(mwt) (m = 1,2,3,---) and integrate
over a period, we find

]cos(mwt)f(t)dt = f:an / cos(mwt) cos(nwt)dt + i b, /cos(mwt) sin(nwt)dt

where all integrals run from —7/2 to 7/2. By (5.106) evgr=)f-' integral in the second sum is
zero. By (5.105) every integral in the first sum is zero except the one with n = m, which is
equal to 7/2. Thus the whole right side collapses to a single term and

/cos(mwt)f(t)dt = T

which establishes (5.83) for a,,. To establish (5.84) for b,, we do exactly the same thing
except that we multiply by sin(mwt).
Finally, to find ag we just integrate the Fourier series (5.82) over a period to give

/f(f)dt = i @, /cos(nwt)di + ibn /sin(nwt)dt

n=0
where all integrals run from —7/2 to 7/2. The integrals of the cosines or sines give sines or
cosines, and are zero because both sines and cosines are periodic. The only exception is the
integral of the cosine with n = 0. Since cos(0) = 1, this integral is just 7, and we conclude
that [ f(t)dt = ao7, which establishes (5.85).



5.49 «x* The given function is even, f(—t) = +f(t). Therefore, sin(mwt)f(t) is odd and
all of the integrals (5.84) for the coeflicients b,, are zero. Since cos(mwt)f(t) is even, the
coefficients a,, are not necessarily zero. Bearing in mind that 7 = 2, so w = 7, we find that

T[2
=2 [ fitydt = Tm
T —7/2 2
while for m > 1.
4 7/2 1
i AP ;f cos(mwt) f(t)dt = Qme] cos(mmt)(1 — t)dt.
0 0

This integral can be evaluated (using integration by parts), and we find that

1 [0 [m even|
o {4fmx/(mﬂ')2 [m odd]

2fmax
(mm)?
The left picture shows the sum of the first two terms (constant term plus first cosine) and

the sawtooth function itself in gray. The right picture shows the first six terms; these follow
the sawtooth so closely that it is hard to tell them apart except at the corners.

B = — [cos(mﬂt)]

f 2terms f 6terms




